Spatial Complementarity and the Coexistence of Species
نویسندگان
چکیده
Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric - ecological pressure - we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each species rather than solely through self-limitation.
منابع مشابه
COMMUNITY ECOLOGY Niche diversity in crustacean cryptic species: complementarity in spatial distribution and predation risk
Recent genetic studies indicate that species with very close phenotypic similarity (‘‘cryptic species’’) are a common feature of nature, and that such cryptic species often coexist in communities. Because traditional views of species coexistence demand that species differ in phenotype to coexist stably, the existence of sympatric cryptic species appears to challenge traditional perspectives of ...
متن کاملEvaluation of Distance and Quadratic Indices for Determination of Plant Species Distribution Pattern in Khoosef Rangelands, Birjand, Iran
One of the major issues examined in the quantitative ecology is the spatial distribution pattern of plant species. Knowledge of the spatial distribution patterns is essential to measure the level of uniformity in the surrounding environment, plant reproduction, and distribution of the seedlings, plant behavioral patterns, coexistence, allelopathic relations, and competition. Therefore, the aim ...
متن کاملCoexistence, niches and biodiversity effects on ecosystem functioning.
General principles from coexistence theory are often invoked to explain how and why mixtures of species outperform monocultures. However, the complementarity and selection effects commonly measured in biodiversity experiments do not precisely quantify the niche and relative fitness differences that govern species coexistence. Given this lack of direct correspondence, how can we know whether spe...
متن کاملSpecies richness and temperature influence mussel biomass: a partitioning approach applied to natural communities.
To increase the generality of biodiversity-ecosystem function theory, studies must be expanded to include real communities in a variety of systems. We modified J. W. Fox's approach to partition the influence of species richness on standing crop biomass (net biodiversity effect) of 21 freshwater mussel communities into trait-independent complementarity, trait-dependent complementarity (species w...
متن کاملLinking modern coexistence theory and contemporary niche theory
Modern coexistence theory and contemporary niche theory represent parallel frameworks for understanding the niche’s role in species coexistence. Despite increasing prominence and shared goals, their compatibility and complementarity have received little attention. This paucity of overlap not only presents an obstacle to newcomers to the field, but it also precludes further conceptual advances a...
متن کامل